59 research outputs found

    An Analytical Measuring Rectification Algorithm of Monocular Systems in Dynamic Environment

    Get PDF
    Range estimation is crucial for maintaining a safe distance, in particular for vision navigation and localization. Monocular autonomous vehicles are appropriate for outdoor environment due to their mobility and operability. However, accurate range estimation using vision system is challenging because of the nonholonomic dynamics and susceptibility of vehicles. In this paper, a measuring rectification algorithm for range estimation under shaking conditions is designed. The proposed method focuses on how to estimate range using monocular vision when a shake occurs and the algorithm only requires the pose variations of the camera to be acquired. Simultaneously, it solves the problem of how to assimilate results from different kinds of sensors. To eliminate measuring errors by shakes, we establish a pose-range variation model. Afterwards, the algebraic relation between distance increment and a camera’s poses variation is formulated. The pose variations are presented in the form of roll, pitch, and yaw angle changes to evaluate the pixel coordinate incensement. To demonstrate the superiority of our proposed algorithm, the approach is validated in a laboratory environment using Pioneer 3-DX robots. The experimental results demonstrate that the proposed approach improves in the range accuracy significantly

    Sensing-Assisted Communication in Vehicular Networks with Intelligent Surface

    Full text link
    The recent development of integrated sensing and communications (ISAC) technology offers new opportunities to meet high-throughput and low-latency communication as well as high-resolution localization requirements in vehicular networks. However, considering the limited transmit power of the road site units (RSUs) and the relatively small radar cross section (RCS) of vehicles with random reflection coefficients, the power of echo signals may be too weak to be utilized for effective target detection and tracking. Moreover, high-frequency signals usually suffer from large fading loss when penetrating vehicles, which seriously degrades the quality of communication services inside the vehicles. To handle this issue, we propose a novel sensing-assisted communication mechanism by employing an intelligent omni-surface (IOS) on the surface of vehicles to enhance both sensing and communication (S&C) performance. To this end, we first propose a two-stage ISAC protocol, including the joint S&C stage and the communication-only stage, to fulfill more efficient communication performance improvements benefited from sensing. The achievable communication rate maximization problem is formulated by jointly optimizing the transmit beamforming, the IOS phase shifts, and the duration of the joint S&C stage. However, solving this ISAC optimization problem is highly non-trivial since inaccurate estimation and measurement information renders the achievable rate lack of closed-form expression. To handle this issue, we first derive a closed-form expression of the achievable rate under uncertain location information, and then unveil a sufficient and necessary condition for the existence of the joint S&C stage to offer useful insights for practical system design. Moreover, two typical scenarios including interference-limited and noise-limited cases are analyzed.Comment: IEEE Transactions on Vehicular Technology, 2023. arXiv admin note: text overlap with arXiv:2211.0420

    Cooperative Cellular Localization with Intelligent Reflecting Surface: Design, Analysis and Optimization

    Full text link
    Autonomous driving and intelligent transportation applications have dramatically increased the demand for high-accuracy and low-latency localization services. While cellular networks are potentially capable of target detection and localization, achieving accurate and reliable positioning faces critical challenges. Particularly, the relatively small radar cross sections (RCS) of moving targets and the high complexity for measurement association give rise to weak echo signals and discrepancies in the measurements. To tackle this issue, we propose a novel approach for multi-target localization by leveraging the controllable signal reflection capabilities of intelligent reflecting surfaces (IRSs). Specifically, IRSs are strategically mounted on the targets (e.g., vehicles and robots), enabling effective association of multiple measurements and facilitating the localization process. We aim to minimize the maximum Cram\'er-Rao lower bound (CRLB) of targets by jointly optimizing the target association, the IRS phase shifts, and the dwell time. However, solving this CRLB optimization problem is non-trivial due to the non-convex objective function and closely coupled variables. For single-target localization, a simplified closed-form expression is presented for the case where base stations (BSs) can be deployed flexibly, and the optimal BS location is derived to provide a lower performance bound of the original problem ...Comment: 14 pages, This work has been submitted to IEEE for possible publicatio

    Duration-adaptive Video Highlight Pre-caching for Vehicular Communication Network

    Full text link
    Video traffic in vehicular communication networks (VCNs) faces exponential growth. However, different segments of most videos reveal various attractiveness for viewers, and the pre-caching decision is greatly affected by the dynamic service duration that edge nodes can provide services for mobile vehicles driving along a road. In this paper, we propose an efficient video highlight pre-caching scheme in the vehicular communication network, adapting to the service duration. Specifically, a highlight entropy model is devised with the consideration of the segments' popularity and continuity between segments within a period of time, based on which, an optimization problem of video highlight pre-caching is formulated. As this problem is non-convex and lacks a closed-form expression of the objective function, we decouple multiple variables by deriving candidate highlight segmentations of videos through wavelet transform, which can significantly reduce the complexity of highlight pre-caching. Then the problem is solved iteratively by a highlight-direction trimming algorithm, which is proven to be locally optimal. Simulation results based on real-world video datasets demonstrate significant improvement in highlight entropy and jitter compared to benchmark schemes

    A MANET Routing Algorithm Based on Difference Degree and Stability of Nodes

    Get PDF
    Aiming at the team-based mobile ad-hoc networks (MANETs), this paper proposes a main-route mechanism by the mobility difference degree of nodes and a backup route mechanism by the nodes stability. In this paper, the whole network is divided into different partitions, and the prediction node computes the changing rate of local topology to determine whether local status broadcast is needed. In order to reduce the similarity of the main route and backup route and minimize the probability of simultaneous failure of the two routes, different routing metrics are used to discover these two routes to ensure reliable data transmission. As a result, the availability of backup route can be increased when the main route fails. While a link is broken, we advance a novel local confirmation method of link interruption and local route reparation. The simulation results shows that our routing algorithm is effective and can improve the network performance significantly

    Multi-Rate Base on OFDM in Underwater Sensor Networks

    Get PDF
    Underwater acoustic communication has the characteristics of multipath effect and frequency selectively attenuation. Aiming at these characteristics, this paper proposes a Multi-Rate model based on channel feature based on OFDM (Orthogonal Frequency Division Multiplexing) technology. With the frequency selectivity of underwater acoustic channel and the link distance, the optimal carrier frequency can be derived. The pilot in OFDM symbol can be used to attain the SNR of each sub-carrier, and the optimal modulation mechanism can be determined by the preset threshold. So we can get the maximal transmission rate under different link distances. This model addresses the problem of ISI (inter-symbol interference) caused by multipath in acoustic channel, and improves the throughput as well as transmission efficiency in underwater sensor networks. The simulation results show that under different link distances, the theoretical bandwidth can be obtained by the frequency selectivity of underwater acoustic channel, different sub-bands and modulation mechanisms can be obtained by channel estimation, and finally the maximal transmission rate can be acquired

    A meta-deep-learning framework for spatio-temporal underwater SSP inversion

    Get PDF
    Sound speed distribution, represented by a sound speed profile (SSP), is of great significance because the nonuniform distribution of sound speed will cause signal propagation path bending with Snell effect, which brings difficulties in precise underwater localization such as emergency rescue. Compared with conventional SSP measurement methods via the conductivity-temperature-depth (CTD) or sound-velocity profiler (SVP), SSP inversion methods leveraging measured sound field information have better real-time performance, such as matched field process (MFP), compressed sensing (CS) and artificial neural networks (ANN). Due to the difficulty in measuring empirical SSP data, these methods face with over-fitting problem in few-shot learning that decreases the inversion accuracy. To rapidly obtain accurate SSP, we propose a task-driven meta-deep-learning (TDML) framework for spatio-temporal SSP inversion. The common features of SSPs are learned through multiple base learners to accelerate the convergence of the model on new tasks, and the model’s sensitivity to the change of sound field data is enhanced via meta training, so as to weaken the over-fitting effect and improve the inversion accuracy. Experiment results show that fast and accurate SSP inversion can be achieved by the proposed TDML method
    • …
    corecore